
 Sunday October 12 13:08:08 2014 Page 1

®

Statistics/Data Analysis

copycode

Title

 copycode -- produce modular self-written ado files

Syntax

 copycode projectname , inputfile(inputfilename)
 [{targetfile(targetfilename) | nocopy } other_options]

 main_options Description
 projectname Name of project to be processed
 inputfile(inputfilename) Name/path of input file that contains the file
 listings
 targetfile(targetfilename) Name/path of output file
 nocopy Show command output without performing the copy
 operation

 other_options Description

 simplemode Process project under simple mode (as opposed to
 ado mode)
 replace Replace target file if it already exists
 force Do not confine copying of lines to copy regions
 starbang(stb_mode) Determine whether starbang lines should be
 copied
 noprogdrop Do not automatically drop program corresponding
 to targetfilename from memory

Description

 copycode copies different source code files into one file. A typical
 application would be an ado file whose final version is supposed to contain
 subroutines and/or Mata routines that you are accustomed to use and re-use in
 your ados.

 copycode is thought to facilitate code production, code maintenance and code
 distribution for Stata programmers who write Stata/Mata code on a large scale.
 You can write small programs and functions, each one in a separate file, test
 them thoroughly, and then include them in any ado file using copycode. When you
 have to make changes to these general purpose functions the re-make of the ado
 files is completely automated.

 If you have written many ado files with many interdependencies (i.e. many of
 your self-written ados call other self-written ados), copycode enables you to
 organize your code in such a way that each final ado file is "modular", i.e.
 does not depend on other user-written code files. This makes the distribution
 of your files easier.

 If you do not want to use copycode to produce your final ado files, you can
 still use it to shed light on the dependency structure of your files (see the
 nocopy subsection below).

 Another feature of copycode is that it allows you to add "private" comments to
 your source code file. Your final published file will not include these lines.

 There is also a wrapper command for copycode available called fastcc ("fast
 copycode") that will allow you to work with copycode more efficiently when using
 it interactively.

 For an alternative description of copycode see Schneider (2012).

Defintions used in this help entry

 Sunday October 12 13:08:08 2014 Page 2

 The definitions of the following table are repeated in the help text as terms
 appear. The table is thought to serve as a reference for a more thorough
 reading of this help entry.

 modular ado file A (user-written) ado file whose functioning does not
 require the presence/installation of other
 user-written code files.
 project Identifies a set of code files that belong together.
 main adv File that is listed first for a project and whose
 name corresponds to the project name and that has an
 .adv extension. It contains the main program of a
 (ado) project.
 project component file Each file entry under a project in the input file.
 dependency Program or function that is called by another program
 or function. There can be direct/first-order and
 indirect/higher-order dependencies.
 copy region limits Strings '!copycodebeg=>' (beginning of a copy region)
 and '!copycodeend||' (end of a copy region).
 copy region Lines of a text file between the strings
 '!copycodebeg=>' and '!copycodeend||'.

Options

 projectname Name of project in the input file that pins down the file listing.

 inputfile(inputfilename) specifies the file path and name of the input file.
 Relative file paths are accepted. The absolute part of the path is assumed
 to be the working directory.

 targetfile(targetfilename) determines the file path and name of the output file.
 Relative file paths are accepted. The absolute part of the path is assumed
 to be the working directory.

 nocopy can be used to specify that no targetfile should be created. If this
 option is used, copycode performs fewer consistency checks of what you
 supply as input. It still performs a consistency check of the input file.
 It does not, however, check for the existence of files, nor does it check
 for the consistency of copy region limits within code files.

 When using option nocopy, options replace, force and starbang are ignored.
 Option nocopy does observe the usual rules that apply in determining whether
 copycode is run in simple mode or in ado mode.

 simplemode will force simple mode. Ado mode is entered when the first file for
 the project to be processed is a "main adv" file. Option simplemode
 overrides this. Then, only the files listed under projectname (direct
 dependencies) will be copied together, without checking for dependencies of
 adv files that belong to the project (see section Simple mode and ado mode
 below).

 replace will overwrite the outputfile if it already exists.

 force tells copycode to perform copy operations irrespective of copy regions of
 the code files. Under option force all lines of all files will be copied
 except for starbang lines. What happens to starbang lines is determined by
 option starbang(stb_mode).

 starbang(stb_mode) specifies whether starbang lines should be copied to the
 output file. The contents of starbang lines are displayed by the which
 command. There are three modes, i.e. stb_mode may assume three values:
 "skip" will not copy any starbang lines. "first" will only copy starbang
 lines of the main adv file. "all" will copy all starbang lines.

 Typically, when producing an ado file you only want to have the starbang
 line(s) of the main adv displayed by which and not the ones of subordinate
 advs or subroutines, which is why stb_mode defaults to "first" in ado mode.
 In simple mode, however, stb_mode defaults to "all".

 Sunday October 12 13:08:08 2014 Page 3

 noprogdrop will prevent copycode from automatically issuing a
 . capture program drop targetbasename
 statement, where targetbasename is the file name "base" of targetfilename.
 For example, if you specify targetfile(mypath/mytarget.ado), copycode
 normally issues a
 . capture program drop mytarget
 to ensure that after the re-make of the project no old version of the
 project resides in memory. Option noprogdrop prevents this statement from
 being executed.

 Usage of option nocopy will also prevent the "program drop" statement.

Remarks

 Remarks are presented under the following headings:

 Overview
 Backup
 Simple mode and ado mode
 File extensions
 Input file structure
 Code dependencies
 Copy regions
 Avoiding file loss
 Downsides
 The 'nocopy' option
 Miscellaneous

 Overview

 copycode compiles a list of code files (text files) that accounts for code
 dependencies of a project and copies code from these files to targetfile.

 A dependency is a user-written program or function that is called by another
 user-written program or function. There can be direct/first-order and
 indirect/higher-order dependencies. If a.ado calls b.ado and b.ado calls c.ado,
 b.ado is a direct dependency of a.ado, c.ado is a direct dependency of b.ado,
 and c.ado is an indirect dependency of a.ado. With many ado files, these
 dependency structures can become complex.

 copycode will figure out dependency structures if you supply it with an input
 file that lists, for each project, the direct dependencies. This input file
 must have the following structure:

 - Each line must contain exactly two tokens.
 - The first token specifies the project.
 - The second token specifies the path and name to a file.

 An example of an input file is given in the Input file structure section. Once
 all dependencies have been determined, copycode copies all relevant code into
 targetfile which then does not depend on any other user-written files. The
 targetfile must always be specified explicitly. This is to prevent accidental
 overwriting of existing files.

 While copying, copycode takes so-called "copy regions" into account. It copies
 only lines that you have marked to be copied.

 Backup of files

 copycode concerns itself mainly with writing ado files to disk. If you use or
 try out copycode, 1) make a backup of your self-written files and 2) keep the
 backup in a safe place. Otherwise there is the danger of accidentially
 overwriting and losing self-written code files.

 Simple mode and ado mode

 Sunday October 12 13:08:08 2014 Page 4

 copycode compiles file lists differently, depending whether it is run in simple
 mode or in ado mode. Simple mode can be invoked e.g. by using option
 simplemode. Then the files to be copied correspond exactly to the lines of the
 input file whose first-column entry equals projectname.

 In ado mode, copycode works differently. Ado mode is related to the following
 problem: When you write an ado file and your ado file depends on other ados you
 have written it becomes difficult to distribute your code - especially if you
 have many ados with many interdependencies.

 One solution is to use copycode to assemble the new ado file that contains the
 code of all ados that are necessary to make the new ado file run. For example,
 if new.ado calls your user-written function existing.ado, you can (sort of)
 simply copy the code from existing.ado into new.ado, that way making it a
 modular routine. Roughly speaking, this is the approach taken by copycode.
 What you have to supply to the command is an input file that lists the direct
 dependencies of your (ado) projects.

 Ado mode is entered when the first file of a project is an adv file (see the
 next section on file extensions) whose file name is identical to the project
 name. This file is then called the "main adv" of the project.

 Most of what follows is related to using copycode in ado mode.

 File extensions

 copycode handles the following file extensions in a special way:

 .adv "ado development file", contains the newly written code necessary
 for your new ado project. In ado mode, when encountering an adv
 file that is listed as a dependency in the input file, copycode
 will search the input file for a correspondingly named project.
 This project must exist, otherwise copycode will error out. Any
 files listed under this project (which may just consist of one
 adv file) are included in the list of files to be copied and in
 turn searched for further dependencies.
 .ado Existing modular user-written ado files to be used as subroutines
 (appended) to the new ado project
 .stp "Stata program file", contains modular Stata code to be appended
 to the code in the adv file. stp files are thought to contain
 short and simple Stata programs that do not depend on other
 programs. You may ignore stp file types and put all of your
 Stata programs into adv files.
 .mata Mata source code file, contains modular Mata code to be appended
 to the code in the adv file

 These files contain Stata programs and Mata functions. You should always name
 your files according to the names of the programs, e.g. sub1.stp should contain
 a Stata program called "sub1", and func2.mata should contain a Mata function
 called "func2".

 copycode will copy the code from the files indicated in your input file in the
 order given in the table above: First it copies your new code from your new
 adv, then (possibly) codes from other adv files, then code from modular (i.e.
 non-dependent) ado files. Then it copies code from stp files, then code from
 mata files, and finally code from files with any other extension.

 In ado mode, within each extension group, files are copied in the order of
 appearance in the input file. In simple mode files are copied exactly in the
 order of appearance in the input file.

 copycode does not check for dependencies of stp files because they should only
 contain small programs that do not call other programs. Checking for the
 depenencies among mata files would be desirable, but this has not yet been
 implemented. To summarize, only adv files are checked for dependencies.

 Input file structure

 Sunday October 12 13:08:08 2014 Page 5

 copycode can detect complex dependency structures among user-written files.
 What it needs as an input, and what you have to provide, is a file that lists
 all (ado) projects and their direct dependencies. This is enough information to
 create a list of dependencies of all orders, for any project in the input file.

 Here is an example of such an input file:

 myinput.txt ------------------------------------
 // Optional project A description goes here
 // note that comments are allowed in the input file
 proj_a c:\ado\personal\proj_a.adv
 proj_a c:\ado\personal\proj_b.adv
 proj_a c:\ado\personal\modular.ado
 proj_a c:\ado\personal\sub1.stp
 proj_a c:\ado\personal\sub2.stp
 proj_a c:\ado\personal\func1.mata
 proj_a c:\ado\personal\func2.mata

 // Optional project B description goes here
 proj_b c:\ado\personal\proj_b.adv
 proj_b c:\ado\personal\proj_c.adv
 proj_b c:\ado\personal\func3.mata
 proj_b c:\ado\personal\sub2.stp
 proj_b c:\ado\personal\sub3.stp
 proj_b c:\ado\personal\func2.mata
 proj_b c:\ado\personal\remarks.txt

 // Optional project C description goes here
 proj_c c:\ado\personal\proj_c.adv
 --

 The first column of your input file specifies the project name. The second
 column specifies the path to the files whose code goes into the output file.

 Suppose you want to create a new ado file proj_a.ado that you want to generate
 using copycode, in ado mode. Then you create a project "proj_a.ado" in your
 input file. The first entry of that project references a file "proj_a.adv".
 This is the "main adv" of proj_a and contains the main routine of the new ado
 file. Then you add entries for all direct dependencies that occur in the code
 contained in proj_a.adv.

 Project names are not case-sensitive and may not contain blanks. File paths may
 contain blanks but be sure to surround the entries by double quotes or compound
 double quotes in this case. File names may not contain blanks. File paths must
 be supplied as absolute paths (e.g. c:\ado\personal\mydir\myfile.adv). Relative
 file paths (e.g. mydir\myfile.adv) are not allowed in the input file. File
 paths may not exceed 244 characters.

 Tab characters on comment lines and in between input tokens are allowed and are
 interpreted as blanks.

 As can be seen from the above example, the input file may contain empty lines
 and comments. Comments must be indicated by "//" which must be the first
 non-blank character sequence on a comment line. Comments must be on a separate
 line, i.e. they may not occur on the same line as an input entry.

 When running copycode in ado mode, the above input file will produce ado files
 that contain code from the following files, in the order as given below:

 Project A
 proj_a.adv
 proj_b.adv
 proj_c.adv
 modular.ado
 sub1.stp
 sub2.stp
 sub3.stp
 func1.mata
 func2.mata
 func3.mata
 remarks.txt

 Sunday October 12 13:08:08 2014 Page 6

 Project B
 proj_b.adv
 proj_c.adv
 sub2.stp
 sub3.stp
 func3.mata
 func2.mata
 remarks.txt

 Project C
 proj_c.adv

 When running copycode in simple mode, the output files will contain code from
 the file list recorded unter each project, in the same order:

 Project A
 proj_a.adv
 proj_b.adv
 modular.ado
 sub1.stp
 sub2.stp
 func1.mata
 func2.mata

 Project B
 proj_b.adv
 proj_c.adv
 func3.mata
 sub2.stp
 sub3.stp
 func2.mata
 remarks.txt

 Project C
 proj_c.adv

 The composition of the final ado files produced under ado mode is discussed in
 the next section.

 Code dependencies

 From the above example, note the following:

 - The order of file types to be copied into the final ado file is: adv - ado
 - stp - mata - other.
 - Apart from the main adv, you do not have to stick to any particular order
 in which you specifiy project component files. The only exception to this
 concerns Mata structures. As you can see from func3.mata of project B
 above which is somewhat hidden, it makes things more transparent to keep
 the order adv-ado-stp-mata-other in the input file.
 - The main adv file of the project (the first project entry) will always be
 copied first.
 - All subroutines from adv dependencies are copied: Files that are
 referenced by proj_b are copied into proj_a.ado since proj_a has proj_b.adv
 as dependency (sub3.stp and remarks.txt are used directly by proj_b only
 and not by proj_a). proj_a.ado requires all of its calls to its private
 program proj_b to work; hence, all project component files for proj_b have
 to be present in proj_a.ado.
 - proj_c.adv is copied into the targetfile for proj_a because proj_a depends
 on proj_c.adv through proj_b.adv. proj_c.adv is a second-order dependency
 of proj_a.
 - There is no duplicate copying of files: sub2.stp is copied only once into
 proj_a.ado, even though proj_a has proj_b.adv as dependency and both proj_a
 and proj_b require the usage of sub2.stp.
 - In proj_a, modular.ado is copied without any attempt to detect its
 dependencies, i.e. if you specify an ado file it is presumed to be modular.
 - If an adv file is specified as a project component file, a project with the
 same name must exist. In the above example, when processing project A or
 project B, copycode sooner or later stumbles upon the reference proj_c.adv
 which it needs to resolve. If it cannot determine whether proj_c.adv has
 dependencies (which is the case if project proj_c does not exist) it will

 Sunday October 12 13:08:08 2014 Page 7

 error out.

 Circular references of adv files are not allowed: If proj_1.adv depends
 proj_2.adv, proj_2.adv must not depend on proj_1.adv. If you try to process a
 project that has such a structure copycode will issue an error. To detect
 circular references, a maximum of 1000 direct or indirect adv dependencies (in
 total) is set. You will necessarily hit this limit if your input file defines a
 circular reference. Note that a circular reference error will also be issued if
 these circular dependencies are not on the top level of dependencies. For
 example, consider the input file

 proj_1 c:\ado\personal\proj_1.adv
 proj_1 c:\ado\personal\proj_2.adv
 proj_2 c:\ado\personal\proj_2.adv
 proj_2 c:\ado\personal\proj_3.adv
 proj_3 c:\ado\personal\proj_3.adv
 proj_3 c:\ado\personal\proj_1.adv

 An error is issued because proj_1 depends on proj_2 which depends on proj_3
 which in turn depends on proj_1, so the references have a circular structure.

 Copy regions

 Before copycode starts copying the lines of a file, it searches the file for the
 strings '!copycodebeg=>' and '!copycodeend||'. Then it only copies the lines in
 between the two strings (excluding the lines containing these strings) to
 targetfile. Henceforth, the two strings are called "copy region limits" and the
 lines between the limits are called a "copy region". A file may contain
 multiple copy regions. Copy region limits must be present in each file, occur
 in the correct order, and reside on different lines. Otherwise an error is
 issued. You can prevent the error from being issued by using option force. In
 this case the entire contents of the files are copied, except for starbang
 lines. What happens to starbang lines is determined by option starbang. The
 usage or omission of option force applies to all files in the project listing.

 The purpose of copy regions is that you can keep comments and auxiliary
 commands/functions in the original files and still have a clean composite file.

 Avoiding file loss

 The output files that you want to create with copycode normally are ado files.
 This means that the ado files that you are creating are fully overwritten
 whenever you make changes to component files and re-process a project. Even if
 you proceed carefully, it may happen that you accidentially overwrite code that
 you have newly written.

 In particular, this may happen if some of your ado files have a complex
 dependency structure so you create these ado files using copycode, but other ado
 files are very simple, do not have dependencies and are outside of the copycode
 system, i.e. written in the usual way. Then you may get into the habit of
 sometimes modifying adv files (to modify ado files created by copycode), and
 sometimes ado files (to directly modify the small and simple ado files). You
 can then easily by accident change the ado file of one of the complex ado
 projects. The next time you re-process this project, this ado file will get
 overwritten and your work will be lost.

 One save solution is to make it a rule to never ever edit ado files. Include
 all of your files in the copycode system, even the small and simple ones that do
 not have dependencies. This means giving the simple ado files an adv extension,
 adding one project line per adv file to the copycode input file, and producing
 the ado file using copycode. This may sound complicated but it is usually a
 change that can be implemented very quickly. Once you have done so, you should
 have a look at fastcc to make working with copycode more efficient.

 Downsides

 Sunday October 12 13:08:08 2014 Page 8

 While copycode makes your life as a developer easier by reducing the amount of
 code that needs to be written and maintained, its major disadvantage is that it
 produces code bloat for the user of your ado routines. Including the code of
 general purpose functions or even full-blown ado routines in a new ado file
 means that larger parts of the code are probably not necessary to make the new
 ado work. If a user of your ados wants to look at your code, it may take longer
 to read through it.

 You may alleviate this problem by including a comment at the top of each adv
 file, e.g.

 // Some portions of the code for subroutines may not be necessary for the
 // functionality of this ado file since it has been produced with
 -copycode-.
 // More information is available on SSC: type -ssc help copycode-
 // A separate help file for the program below may be available on SSC.

 If the adv code is used as a subroutine, the user may be able to just read
 through the help file if it is available, instead of having to work through the
 code itself.

 Another downside is the limited ability to format the target file. Last but not
 least, it takes a little while to understand how the command works (as you may
 have noticed).

 The 'nocopy' option

 If you do not want to use copycode to generate your self-written final ado
 files, you can still put it to use to shed light on the dependency structure of
 your code files.

 You still have to create an input file like the one above that matches the
 direct dependencies of the projects that you have written. The screen output of
 copycode and the results saved in r() will then tell you the details about the
 full dependency structure of your projects.

 Be sure to give your self-written ado file dependencies in your input file an
 adv extension. These files may actually exist as ado files (not as adv files)
 on your hard drive. You must still give them an adv extension in the input
 file, because only then will copycode check for their dependencies.

 Use option 'nocopy' then. Then you do not have to create a bogus target file.
 Also, copycode concerns itself only with the dependency structure that it can
 glean from the input file and does not check for the existence of files and the
 consistency of copy region limits within the code files.

 Miscellaneous remarks

 Relationship of ado mode / simple mode, option force, and option starbang.
 Running copycode in ado mode / simple mode, using option force and using option
 starbang are in principle three different things independent of each other.

 - Choosing ado mode / simple mode determines whether higher-order
 dependencies of a project should be copied.
 - Option force says that copy operations should not be confined to copy
 regions.
 - Option starbang determines whether starbang lines should be included in the
 copy operations.

 The only link between the above three features is that in ado mode stb_mode of
 option starbang defaults to "first". In simple mode, it defaults to "all".

 Potential function name clashes. There is a potential naming conflict between
 private subroutines that exist in adv/ado files referenced in the input file and
 other programs that you are refering to in the input file. As an example,
 consider the input file

 Sunday October 12 13:08:08 2014 Page 9

 --
 proj_a c:\ado\personal\proj_a.adv
 proj_a c:\ado\personal\modular.ado
 proj_a c:\ado\personal\sub1.stp
 --

 If modular.ado has a private subroutine (program) called "sub1" the output file
 produced by copycode will have two programs named "sub1" and Stata will refuse
 to load the ado. One way to remedy this is to adopt appropriate naming
 conventions, e.g. give subroutines within adv/ado files prefixes according to
 the adv/ado file name, etc.

 It is perfectly fine to have subroutines in your main adv or any other adv/ado
 file. If you have a special purpose program/function whose only application is
 within one particular adv/ado file, the only issue of adding this function to
 the adv/ado (project component) file is to pay attention to potential naming
 conflicts. Make sure to keep these program/functions within copy regions so
 they will always be copied to the output file.

 If you have a subroutine that turns out to be useful in other contexts as well
 it is beneficial to include this program in a separate adv or stp file, and add
 corresponding stp entries to projects that make use of the subroutine.

 Debugging and certification scripts. Each of the files that go into the final
 ado can be loaded separately into Stata for debugging purposes. If you have a
 look at func1.mata used in the examples section, you can see that the code file
 func1.mata is used in the copycode system but can be loaded separately into
 memory:

 . do func1.mata

 will define func1() as a Mata function. This works because the actual code that
 gets copied by copycode is confined to copy region limits.

 You can even push it further and use the file func1.mata as a certification
 script by adding initialization statements at the top of the file (see cscript)
 and add certification assert and confirm statements at the bottom of the file.
 You will still be able to use this file within the copycode context since, by
 default, copycode only copies the code that is located within copy region
 limits. If all certification-related lines are located outside of copy regions,
 you can use func1.mata as both a source code file for the copycode system and as
 a certification script. The same holds true for adv and for stp files.

 Using code from other users. If your project depends on an ado file written by
 some other user, you can include this ado file in your copycode project as a
 dependency in order to make your project modular. Your final ado file will then
 contain the code from the "third-party" user-written ado file. It goes without
 saying that in these cases you should ask for permission first and give proper
 acknowledgements in your help files when you distribute your code.

 Version statements. Another potential conflict concerns version statements. If
 you plan to build a new ado, say under "version 11", and accidentially include a
 program via copycode that has a "version 12" statement, the ado file will not
 execute under Stata 11. A cursory look at the (top of the) ado code, however,
 would (misleadingly) suggest that. You must manually check for appropriate
 version control statements in your output ado files.

 Exit statements. If you routinely include "exit" statements at the end of your
 main adv definition programs (after the closing "end" statement), make sure to
 exclude them from the copy region so they do not show up in the new composite
 ado file. Otherwise it will not work.

 Mata structures. In ado mode, within each file extension group, the order of
 files copied is the order of appearance in the input file. This is important if
 you use Mata structures. In the Mata code, structures have to be defined before
 they can be used in subsequent code. If you use Mata structure definitions in
 separate files, it is the safest strategy to put these files right underneath
 the main adv file of your project.

 Sunday October 12 13:08:08 2014 Page 10

 Other uses. You may discover other uses of copycode, especially using option
 simplemode. For example, you can use it to produce nice estimation output
 reports. First, generate various smcl log files with estimation output and
 manually write other smcl files that comment on the output. You can then use
 copycode to copy the smcl files into one file in any order desired, that way
 producing a nice and clean report.

 Reverting to non-modular ado files. All you have to do is to create a copy of
 your input file and comment out all adv files of a project except for the main
 adv. Using the two input files you can very easily switch between creating
 modular ado files and non-modular ado files.

 Using do-files. If you have many ado files, you probably want to have a "master"
 do file that processes all of your projects. For the input file used above,
 this do file could read

 copycode_runall.do:
 --
 // FILE PURPOSE: GENERATE ALL SELF-WRITTEN ADO FILES
 copycode proj_a, inp(c:\ipath\myinput.txt) target(c:\tpath\proj_a.ado)
 replace
 copycode proj_b, inp(c:\ipath\myinput.txt) target(c:\tpath\proj_b.ado)
 replace
 copycode proj_c, inp(c:\ipath\myinput.txt) target(c:\tpath\proj_c.ado)
 replace

 > -

 Operating system. While copycode can be used on any operating system that Stata
 runs on, it has only been tested on Windows.

 Examples

 Consider the following input file

 input.txt: -------------------------------------
 // Files for project A
 proj_a c:\ado\personal\proj_a.adv
 proj_a c:\ado\personal\sub1.stp
 proj_a c:\ado\personal\func1.mata
 // Files for project B
 proj_b c:\ado\personal\proj_b.adv
 proj_b c:\ado\personal\proj_a.adv
 proj_b c:\ado\personal\sub1.stp
 proj_b c:\ado\personal\func2.mata
 --

 The files that go into the final ado could look like this:

 proj_a.adv: ------------------------------------
 // !copycodebeg=>
 *! version 1.0.1 12jun2011 dcs
 program define proj_a
 display "hello world says proj_a"
 proj_a_sub1
 sub1
 /* !copycodeend||
 TODO: improve sub1
 by switching to...
 (...)
 !copycodebeg=> */
 mata: func1()
 end

 program define proj_a_sub1
 (...)
 end

 // !copycodeend||

 Sunday October 12 13:08:08 2014 Page 11

 /*
 TODO:
 - make the routine do something useful
 - (...)

 VERSION HISTORY
 0.0.1 12apr 2011 (...)
 */
 --

 sub1.stp: ------------------------------------
 capture program drop sub1
 // !copycodebeg=>
 program define sub1
 (...)
 end

 // !copycodeend||

 /*
 TODO
 (...)
 */
 --

 func1.mata: ------------------------------------
 capture mata mata drop func1()
 // !copycodebeg=>
 mata:
 void func1() {
 (...)
 }
 end

 // !copycodeend||

 /*
 TODO
 (...)
 */
 --

 The statement

 . copycode proj_a, inputfile(c:\mypath\input.txt)
 targetfile(c:\mytargetdir\proj_a.ado)

 would produce c:\mytargetdir\proj_a.ado which reads:

 proj_a.ado: ------------------------------------
 *! version 1.0.1 12jun2011 dcs
 program define proj_a
 display "hello world says proj_a"
 proj_a_sub1
 sub1
 mata: func1()
 end

 program define proj_a_sub1
 (...)
 end

 program define sub1
 (...)
 end

 mata:
 void func1() {
 (...)

 Sunday October 12 13:08:08 2014 Page 12

 }
 end
 --

 From the above example, note the following:

 - copycode found the first file of proj_a to be an adv file whose name is
 identical to the project. It therefore entered ado mode. However, since
 there are no other adv files specified, there are no dependencies to
 detect.
 - By default, copycode copies only copy regions. The private comments in the
 source code files do not show up in the output file.
 - In ado mode, the starbang(stb_mode) option defaults to "first", which means
 that the starbang lines from the main adv file are copied to the output
 file.
 - The main adv file contains a subroutine. Prepending the name of the
 subroutine by the name of the adv file ("proj_a_sub1") prevented a function
 name clash.

 If, in addition, we assume the following files:

 proj_b.adv: ------------------------------------
 // !copycodebeg=>
 *! version 1.2.0 30dec2011 dcs
 program define proj_b
 display "hello world again"
 proj_a
 sub1
 mata: func2()
 end

 // !copycodeend||

 /*
 TODO:
 - (...)

 VERSION HISTORY
 - (...)
 */
 --

 func2.mata: ------------------------------------
 capture mata mata drop func2()
 // !copycodebeg=>
 mata:
 void func2() {
 (...)
 }
 end

 // !copycodeend||

 /*
 TODO
 (...)
 */
 --

 The statement

 . copycode proj_b, inputfile(c:\mypath\input.txt)
 targetfile(c:\mytargetdir\proj_b.ado)

 would produce c:\mytargetdir\proj_b.ado which reads:

 Sunday October 12 13:08:08 2014 Page 13

 proj_b.ado: ------------------------------------
 *! version 1.2.0 30dec2011 dcs
 program define proj_b
 display "hello world again"
 proj_a
 sub1
 mata: func2()
 end

 program define proj_a
 display "hello world says proj_a"
 proj_a_sub1
 sub1
 mata: func1()
 end

 program define proj_a_sub1
 (...)
 end

 program define sub1
 (...)
 end

 mata:
 void func2() {
 (...)
 }
 end

 mata:
 void func1() {
 (...)
 }
 end
 --

 From the above example, note the following:

 - copycode found the first file of proj_b to be an adv file whose name is
 identical to the project. It therefore entered ado mode. It found proj_a
 as an adv input to proj_b and checked for a proj_a project entry in the
 input file. It included the files found there in the output file.
 - If proj_a would have had a component file proj_c.adv, copycode would have
 included the component files from proj_c as well, and so forth.
 - Again, in ado mode, option starbang(stb_mode) option defaults to "first",
 which means that the starbang lines from the main adv file are copied to
 the output file. The starbang lines from proj_a have not been copied.

 Saved results

 copycode saves the following in r():

 Macros
 r(project) Name of project that has been processed

 in simple mode, the following is also saved:
 r(dep_direct) File names of direct dependencies of the project
 r(dep_direct_path) Full file paths of the direct dependencies

 in ado mode, the following is also saved:
 r(dep_all) File names of all dependencies of the project
 r(dep_adv) File names of adv dependencies
 r(dep_ado) File names of ado dependencies
 r(dep_stp) File names of stp dependencies
 r(dep_mata) File names of mata dependencies
 r(dep_other) File names of other dependencies
 r(dep_all_path) Full file paths corresponding to r(dep_all)
 r(dep_adv_path) Full file paths corresponding to r(dep_adv)
 r(dep_ado_path) Full file paths corresponding to r(dep_ado)
 r(dep_stp_path) Full file paths corresponding to r(dep_stp)

 Sunday October 12 13:08:08 2014 Page 14

 r(dep_mata_path) Full file paths corresponding to r(dep_mata)
 r(dep_other_path) Full file paths corresponding to r(dep_other)

 All returned values are lower case, irrespective of what the actual casing of
 the files on disk or in the input file is.

Author

 Daniel C. Schneider, Goethe University Frankfurt, schneider_daniel@hotmail.com

Acknowledgements

 I thank Kevin Crow from StataCorp and the participants of the German Stata Users
 Group Meeting 2012 for helpful comments.

DISCLAIMER

 THE COPYCODE STATA PACKAGE (THE "SOFTWARE") COMES AS-IS. NO WARRANTIES, EXPRESS
 OR IMPLIED, ARE GIVEN. ANY CONSEQUENTIAL DAMAGE DUE TO THE USE OF THE SOFTWARE
 IS THE SOLE RESPONSIBILITY OF THE USER.

References

 Schneider, D.C. (2012). Modular Programming in Stata. Presentation at the
 German Stata Users Group Meeting 2012, Berlin. Available at
 http://www.stata.com/meeting/germany12/abstracts/desug12_schneider.pdf.

Also see

 Online: [R] net

 User-written, if installed:

 adolist -help- -install- -remote help-

