
 Sunday October 12 13:08:08 2014 Page 1

®

Statistics/Data Analysis

fastcc

Title

 fastcc -- ("fast copycode") run -copycode- with standard options

Syntax

 fastcc [projectname] [, { settings(set_arg[:set_value]) | fastcc_options
 copycode_options }]

 main_options Description

 projectname Name of project to be processed
 settings(set_arg[:set_value]) Record fastcc settings to ini file

 fastcc_options Description

 alldepon(depfilename) Process all projects that use file depfilename
 verbose Show detailed copycode output instead of
 fastcc's summary output

 copycode_options Description

 nocopy See copycode
 simplemode See copycode
 force See copycode
 starbang(stb_mode) See copycode
 noprogdrop See copycode

Description

 You must be familiar with copycode before you can understand what fastcc is
 doing.

 fastcc has two main uses. First, it runs copycode with standard options so you
 do not have to type them at the command line.

 Secondly, fastcc can re-process all projects that depend on one particular file.
 This is done by option alldepon.

Options

 projectname will process project projectname.

 settings(set_arg[:set_value]) displays and sets values recorded in fastcc's ini
 file. This option is exclusive: You may not use it in conjunction with any
 other option.

 The values of the path to the input file and to the target directory of the
 target file are stored in the text file `c(sysdir_plus)'/f/fastcc.ini (the
 "ini file"). If you wish, you can open and modify this file directly.
 Alternatively, issuing

 . fastcc, settings(inputfile: inputfilepathandname)
 . fastcc, settings(targetdir: targetdirpath)

 will record your settings in the ini file. Each set_arg (inputfile or
 targetdir) must be followed by a colon and by a valid path to a file
 (inputfile) or directory (targetdir). fastcc assumes an output file name of
 projectname.ado which it will append to targetdirpath. Relative file paths
 are not allowed in the ini file. Settings arguments may not exceed 244
 characters.

 In addition,

 Sunday October 12 13:08:08 2014 Page 2

 . fastcc, settings(list)

 will list the current ini file entries.

 alldepon(depfilename) will process all projects that depend on file depfilename.
 Note that depfilename must be supplied with extension since fastcc must be
 able to identify the file among .mata, .stp, .adv, etc. files.

 The interaction of this option with option simplemode is of particular
 importance. If you leave out option simplemode, fastcc runs through all
 projects in the input file and determines for each project whether the
 condition for ado mode are given (i.e. the project has a "main adv"). If
 so, it compiles a list of all first-order and higher-order dependencies; if
 depfilename is among them, it includes this project among the projects to be
 processed. If the conditions for ado mode for a particular project are not
 met, fastcc checks only the direct dependencies for the occurence of
 depfilename. If they inlcude depfilename, the project is added to the list
 of projects to be processed.

 If you do use option simplemode, fastcc checks for each project only the
 direct dependencies for the occurence of depfilename.

 If you use option alldepon, you cannot specify projectname.

 verbose will display detailed output from copycode instead of the summary output
 from fastcc.

 nocopy, simplemode, force, starbang, and noprogdrop fully correspond to copycode
 options and are passed to each copycode call made by fastcc.

Remarks

 You can use fastcc to work more efficiently with copycode. fastcc runs copycode
 with standard options. These standard options are:

 copycode option fastcc equivalent

 inputfile as recorded in fastcc's ini file
 targetfile path join of target directory as recorded in fastcc's ini
 file and the output file name, which is assumed to be the
 project name plus ado file extension
 replace is always assumed

 That way, a copycode statement like

 . copycode myproject, input(pathtoinput/input.txt)
 target(pathtotarget/myproject.ado) replace

 conveniently collapses into

 . fastcc myproject

 If you are in the process of developing and testing an ado file and you are
 constantly making small changes and re-processing the project, this saves a good
 bit of typing.

 The standard options are based on a set of assumptions that are typically true
 in practice:

 - You are using only one input file that lists all of your projects. Very
 rarely will you have several versions of an input file or several input
 files for different purposes.
 - The project names correspond to the names of the ado files you want to
 create.
 - You know what you are doing when executing fastcc and it is ok to overwrite
 existing ado files.
 - Your self-written ados reside in one directory (e.g. c:\ado\personal).

 Sunday October 12 13:08:08 2014 Page 3

 The second main purpose of fastcc is related to the following problem: Suppose
 you have made changes to a file called depfilename that goes into several of
 your projects. You do not know, however, the list of projects that directly or
 indirectly depend on depfilename. The statement

 . fastcc, alldepon(depfilename) nocopy

 will provide you with screen output on the list of projects in question. This
 list will also be saved in r().

 If you leave out option nocopy from the above statement, all of these projects
 will be re-processed. That way, after making changes to one particular file you
 can quickly bring all of your ado projects to the latest stage of your code
 development. After a succesful run of the certification scripts for the
 projects that have been re-processed (or, ideally, after running certification
 scripts on all your ado projects) you are all set.

 --- Warning ---
 There is no replace option in fastcc. Unless option nocopy is supplied, fastcc
 will always create or overwrite a file called projectname.ado. Similarly, when
 using option alldepon, it will create or overwrite files projectname1.ado,
 projectname2.ado, ..., where these file names correspond to the projects that
 have been processed. Be sure that you know what you are doing when using
 fastcc.

Examples

 Before you can use fastcc you first have to set the default input file path and
 the target directory for output files. This requires running two statements
 (here: with bogus arguments)

 . fastcc, settings(inputfile : c:\mypath\input.txt)
 . fastcc, settings(targetdir : c:\mytargetdir)

 Since they are stored in a file, these settings are kept in between Stata
 sessions and reboots. If you want to change these settings you simply re-issue
 these commands using different arguments. You can always query the current
 settings by

 . fastcc, settings(list)

 Continuing the examples from copycode, the command

 . fastcc proj_a

 is identical to the copycode statement of the first copycode example:

 . copycode proj_a, inputfile(c:\mypath\input.txt)
 targetfile(c:\mytargetdir\proj_a.ado) replace

 and will produce an identical outputfile. Note the implied replace option by
 the usage of fastcc.

 Applying option alldepon,

 . fastcc, alldepon(proj_a.adv)

 is identical to the two copycode statements of the first copycode example and
 the second copycode example:

 . copycode proj_a, inputfile(c:\mypath\input.txt)
 targetfile(c:\mytargetdir\proj_a.ado) replace
 . copycode proj_b, inputfile(c:\mypath\input.txt)
 targetfile(c:\mytargetdir\proj_b.ado) replace

 and will produce identical output files. This is because both proj_a and proj_b
 depend on proj_a.adv.

Saved results

 Sunday October 12 13:08:08 2014 Page 4

 fastcc saves the following in r():

 Macros
 When supplying projectname, results saved will correspond
 exactly to the ones returned by copycode.

 When using option alldepon, saved results are instead:
 r(projectlist) List of projects that depend on depfilename. Contains
 tokens from r(failed_make) but not from r(failed_check).
 r(failed_make) List of projects that could not be processed because
 errors occured
 r(failed_check) List of projects that could not be checked for
 dependencies because errors occured

 All returned values are lower case, irrespective of what the actual casing of
 the files on disk or in the input file is.

Author

 Daniel C. Schneider, Goethe University Frankfurt, schneider_daniel@hotmail.com

References

 Schneider, D.C. (2012). Modular Programming in Stata. Presentation at the
 German Stata Users Group Meeting 2012, Berlin. Available at

